
Chapter 1

Dimension reduction

1.1 Introduction

“Curse of dimensionality” has long been an essential issue in quantita-
tive research fields. The term was first introduced by Richard Bellman
in 1957 when he encountered significant obstacles under large dimension
of “state variables” in optimization problems. If 10 equally spaced grids
are placed in each dimension of a unit cube, the total number of function
evaluation for exhaustive search grows exponentially (e.g. 103 for three
dimensions and 1020 for 20 dimensions). He then argued in favor of his
dynamic programming method as a solution for particular optimization
problems. In many computational problems, the computing complex-
ity also increases exponentially as the dimension increases. In statistics,
another type of “curse of dimensionality” arises when estimation of a
density function converges very slowly to the truth in high-dimensional
space, which means accurate characterization of a high dimensional data
set is generally impossible. For example, when using the Gaussian kernel
method to estimate the density of a unit d-dimensional multivariate nor-
mal distribution, the required sample sizes were calculated for different d
if the interest is to estimate density at point 0 and the sample size is large
enough so that the relative mean square error E(f̂(0) − f(0))2/f(0)2 is
less than 0.1 (Silverman, 1986). In one or two dimensional case, the re-
quired sample sizes are only 4 and 19. But when d increases to 10, the
sample size needed becomes 842,000. A third commonly seen example
is from numerical integration of a general function. When a non-smooth
function is evaluated on a high-dimensional space, accurate integration
of this function becomes hopeless. The dimensionality issue has gained
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increasing attention since 1980s when more and more high-dimensional
and large volume data are accumulated in the modern world.

High-dimensional data can also present peculiar behaviors. A well-
known phenomenon is the so-called “concentration of measure”. For ex-
ample, consider a standard multivariate (d-dimensional) normal distribu-
tion. When d=1 or 2, the density is concentrated near the origin. When
d goes large, it is, however, easily shown that the distribution is concen-
trated on a d-dimensional sphere/shell with radius equals

√
d (see Exer-

cise 1). Such counter-intuitive behavior reminds that high-dimensional
data analysis should be done carefully.

To facilitate analysis of high dimensional data, dimension reduction
techniques have been rigorously developed and applied for decades. Prin-
cipal component analysis (PCA) and sigular value decomposition (SVD)
are the most commonly used techniques. Section 1.2.1 below will be de-
voted to introduce theories and algorithms of this important technique.
The PCA technique is, however, only useful for data in Euclidean space
and has the drawback that it generates both positive and negative load-
ings in the many dimensions. Alternatives such as multidimensional scal-
ing (MDS) and non-negative matrix factorization (NMF) will be intro-
duced. In contrast to PCA, MDS can take any dissimilarity matrix (does
not even have to be a distance matrix) as the input for dimension reduc-
tion and NMF generates dimension reduction with only positive loadings
for better interpretation. Section 1.3 introduces two additional dimen-
sion reduction methods in the presence of a outcome variable (e.g. when
data matrix comes from gene expression profile and the outcome variable
is disease subtype or time to recurrence). The classifical Fisher’s linear
discriminant analysis finds reduced dimensions that best discriminate a
binary or multi-class outcome variables. Partial least square (PLS) has
similar ability to identify reduced space most associated with a continu-
ous outcome variable. In each subsection, we demonstrate the concept,
related theory and algorithm, then followed by a breast cancer gene ex-
pression profile example.

1.2 Unsupervised dimension reduction

1.2.1 Principal component analysis and singular value
decomposition

Taking gene expression profile as an example. A data matrix with ex-
pression intensities of G genes and S samples are available. The data
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matrix is deonted as

M = [xgs]1≤s≤S,1≤g≤G = [~xT1 , ~x
T
2 , · · · , ~xTS ]

where ~xs = (xs1, · · · , xsG), G is usually in the order of 4k to 30k, and
S is typically 10 to 500. To perform dimension reduction, one may
project samples onto a low-dimensioinal space (i.e. view S samples on
G-dimensionial space and perform dimension reduction). Alternatively,
we can also project genes in S-dimensional space onto a low-dimensional
space. In the notations here, samples are to be projected.

Before considering observed empirical data M, we first consider the
population (random variable) version. Suppose ~X = (x1, . . . ,xG) is a
random vector and data vector ~xs for sample s (1 ≤ s ≤ S)is an obser-

vation from distribution ~X (i.e. ~x1, ~x2, · · · , ~xS ∼D ~X). Without loss of

generosity, assume E(~X) = ~0 and Var(~X) = E(~XT ~X) = Σ. Σ is a G×G
symmetric and positive-definite matrix.

Eigen-decomposition and PCA

For any symmetric and positive-definite matrix Σ, there exists matrix V
and diagonal matrix D such that

Σ = VDVT

, where

D =


λ1

λ2 0

0
. . .

λG


, λ1 ≥ λ2 ≥ . . . ≥ λG ≥ 0 are eigenvalues. V = (vT1 ,v

T
2 , . . . ,v

T
G) are

eigen vectors. vi ·vTj = 0 when i 6= j and |vg|2 = vg ·vTg = 1, 1 ≤ g ≤ G.

Properties

1. Orthogonal projected random variables: Define by Lg = vg · ~XT

the random variable that ~X projects on vg. Since VTΣV = D, we

can show that Cov(Li, Lj) = viΣvTj = 0 if i 6= j and V ar(Lg) =

vgΣvTg = λg.
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2. Effective reduced linear space: Suppose r = rank(Σ) ⇒ λ1 ≥ λ2 ≥
. . . ≥ λr > 0, λr+1 = . . . = λG = 0. Then ~U = (u1, · · · ,ur) =

( 1√
λ1

v1
~XT , · · · , 1√

λr
vr ~X

T ) forms a reduced orthonormal basis of

the original linear space spanned by ~X = (x1, · · · ,xG). In general,
we hope r << G (and it is usually the case in many applications).
The new reduced r-dimensioinal linear random vector space con-
tains all information of the original G-dimensional linear space.

3. Geometric interpretation of PCA: Consider the following optimiza-
tion problem where we seek for an optimal projection direction for
~X such that the variance after projection can be maximized :

max
α

Var(α~XT ) = αΣαT , subject to |α| = 1.

The solution is the first eigenvector α∗ = v1, and Var(α∗ · ~XT ) =
v1ΣvT1 = v1VDVTvT1 = λ1
Proof: Suppose α =

∑
agvg,

∑
a2g = 1, Var(αx) =

∑
a2gλa. There-

fore, (a1, a2, . . . , aG) = (1, 0, . . . , 0)

Similarly, Lg has the maximum variance among all possible projec-
tions orthogonal to L1, L2, . . . , Lg−1, for 1 ≤ g ≤ G.

4. Definition of power of a symmetric positive-definite matrix: It can
be easily shown that Σ1/2 = VD1/2VT (exercise 2). Extending the
proof, we can define the power of matrix Σ as Σm = VDmVT for
m ∈ R.

5. Percent of variance explained in the dimension reduction: The
trace(Σ), the sum of variance of all original variates, is invariant of
changes of basis. Particularly, trace(Σ) =

∑
Var(Lg) =

∑
λg.

Define rg =
λg∑
λg′

. rg represents the proportion of total variance

explained by the gth PC. Rg =
∑g
g′=1 rg′ is the cumulative propor-

tion of variance explained by the first g PCs. This is a good index
to quantify goodness of dimension reduction.

6. Caution 1: In PCA, demension reduction is achieved by removing
dimensions with small variance. But there is no guarantee that the
removed dimensions are not essential to the data. In many cases,
essential data structure and information can dissapear (e.g. two
skewed clusters example in Exercise 7).

7. Caution 2: PCA potentially has standardization issues. If Var(xg)
are in wide range, standardization should be considered to avoid
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dominance of this variable. Consider standardization x
(s)
g = 1√

Var(xg)
xg.

The covariance matrix Σ(s) = Var(x
(s)
g ) becomes the correlation

matrix and the eigen decomposition is denoted as

Σ(s) = V(s)D(s)V(s)T

There is no simple connection between V and V(s) (see Exercise 8).
That is, PCA on covariance matrix and correlation matrix perform
very differently. To standardize or not require careful consideration
based on the data.

8. Theoretical convergence under normal assumption: PCA generally
does not require normal assumption. Under normal assumption, in-
ference can be made about λ̂k and v̂k (e.g. see the theorem below).
Under normal assumptions, PCs are independent; without normal
assumption, PCs are linearly uncorrelated but could be dependent.

Theorem (p473, Anderson 2003) Suppose ~X ∼ N(µG,ΣG×G),

M is an observed S × G data matrix from ~X, Σ̂ is the sample co-
variance matrix of M and λ̂1, · · · , λ̂G are the (distinct) eigenvalues

of Σ̂. Asymptotically, λ̂g is distributed as follows (Exercise 3):

√
n(λ̂g − λg)→ N(0, 2λ2g), for g=1,...,G

Methods to compute eigenvectors and eigenvalues

Characteristic polynomial : To compute eigenvalues and eigenvectors, the
characteristic polynomial can be used. This method applies a property
that a eigenvector x of Σ should satisfy

Σv = λv.

In other words, the eigenvector x does not rotate under transformation
of Σ but only scale by λ. This is equivalent to solving (Σ− λI)v = 0. or
det(Σ− λI) = 0. The determinant is a G-degree of polynomial function
and the problem converts to finding its roots. This method is, however,
often too slow unless G is small.

Power iteration: Power method focuses on finding eigenvectors such that
Σv = λv. The method starts with a random vector v(0). It then iter-
atively calculates v(i) = Σv(i−1)

|Σv(i−1)| until the vector converges. The vector

usually converges quickly (although the exact converence rate depends on
Σ) to the eigenvector corresponding to the largest eigenvalue (Exercise
4 to prove it!!). The contribution of the identified eigenvector v1 is then
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subtracted from Σ (i.e. Σ′ = Σ − λ1vT1 v1). The process is repeated to
find the next eigenvector.

Exercise 5 will provide a practice to program characteristic polyno-
mial and power iteration algorithms and compare to R standard routine.
For eigen decomposition of a very large matrix, the power iteration is
still not effective enough. Faster algorithms are available, including QR
algorithm and the method combining Householder transformation with
LU decomposition. (??add references??)

SVD and relation to eigen-decomposition

Assume data matrix M = [xgs]1≤g≤G,1≤s≤S . In gene expression profile
examples, we normally have small sample size compared to large number
of genes (i.e. S << G, a problem often called “small-n-large-p”). In
contrast to eigen-decomposion that works on symmetric positive-definite
matrixes, SVD technique directly decompose any G× S data matrix M
as

M = U

(
D 0
0 0

)
VT.

Suppose 1 ≤ r = rank(M) ≤ min(S,G). Then D is an r × r diagonal
matrix, U is a G×G orthogonal transformation matrix and V is a S×S

orthogonal transformation matrix. Suppose D =

δ1 0
. . .

0 δr

, δ1 ≥

δ2 ≥ . . . ≥ δr > 0.

� Consider MM′ (G×G matrix)

U′MM′U = U′
(

U

(
D 0
0 0

)
V′V

(
D 0
0 0

)
U′
)

U =

(
D2 0
0 0

)
G×G

Denote eigenvalues of MM′ as (λ1, λ2, . . . , λr, 0, . . . , 0) ⇒ λi = δ2i ,
1 ≤ i ≤ r.
Similarly, V′M′MV =

(
D2 0
0 0

)
S×S

� Suppose U∗ =
(
(u(1))T , . . . , (u(r))T

)
G×r, V∗ =

(
(v(1))T , . . . , (v(r))T

)
S×r.

M = U∗G×rDr×r(V
∗)Tr×S

u(1), . . . ,u(r) are called eigen-samples.
v(1), . . . ,v(r) are called eigen-genes.
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Computational advantage of SVD

Consider eigen decomposition of MM′ (a G × G matrix). Since
S << G, the eigen decomposition is quite time consuming. Alterna-
tively, one can solve eigen-decomposition of M′M first (a S ×S matrix).

Identify rank, V∗ and D2 such that M′M = V∗D2V∗
′
. U∗ can be easily

generated as U∗ = MV∗D−1. Finally, we have eigen decomposition of

MM′ = U∗D2U∗
′

With SVD, one can also calculate the Moore-Penrose inverse of M:

M−1 = V

(
D−1 0

0 0

)
U′

It is interesting to see that M−1 6= (MT )−1 under the Moore-Penrose
inverse since the two inverse matrixes do not even have the same dimen-
sion.

Approximation by low-rank matrix

When the first r eigenvalues are apparently greater than zero and the
remaining S − r eigenvalues are near zero (but not exactly zero), one
may suspect that M′M may have rank r and the near-zero eigenvalues
are actually zero with numerical rounding errors. One may attempt to
approximate M = UDV′ by M̃ = UD̃V′ where D̃ is a diagonal ma-
trix equivalent to D except that the last S − r near-zero eigenvalues are
replaced by zero. This intuition is actually valid and supported by the
Eckart-Young theorem for low-rank approximation:

Eckart-Young theorem Consider the approximation of M by any
possible r-rank matrix Z. Denote by ||M− Z||F the Frobenius norm
(which is defined as the square-root of the summation of the squared
modulus of all entries in a matrix) of matrix M− Z. We can show that
arg minZ ||M− Z||F = M̃. That is to say, the best r-rank matrix to
approximate M is exactly the matrix that replaces the S − r smallest
eigenvalues as zero (Exercise 6).

A yeast cell-cycle transcriptomic example

Cell cycle is a fundamental mechanism in the control of cell prolifer-
ation. A cell often starts from a resting phase G0 where the cell has left
the cycle and stops division. In the first gap G1 phase, the cell starts to
increase in size. The cell then starts to replicate DNA in the synthesis S
phase. In the second gap G2 phase, the cell continues to grow. Finally,
the cell divides into two in the mitosis M phase. Several check-point
mechanisms in the stages of cell cycle are crucial to examine abnormal
mutation, DNA damage and errors in DNA replication. Failure of normal
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cell cycle controls can accumulate the genetic errors and lead to cancers.
Figure 1.1 shows a diagram of the four cell cycle phases.

G0 

G1 M 

G2 S 

Figure 1.1: The four cell cycle phases.

Spellman et al. (1998) generated a series of yeast cell cycle microarray
experiments to identify cell cycle related genes. Yeast cells are first syn-
chronized to the same G0 stage by four different chemicals: alpha, cdc15,
cdc28 and elu. The cells are then released into cell cycle and the array
experiments are performed in incremental time intervals (every 7 minutes
for alpha, every 10-20 minutes for cdc15, every 10 minutes for cdc28 and
every 30 minutes for elu). The data set (obtained from http://genome-
www.stanford.edu/cellcycle/) contains the expression profile of 800 genes
and their annotated cell cycle stage (“G1”, “S”, “S/G2”, “G2/M” and
“M/G1”). Figure 1.2 shows the PCA projection of the samples using
different synchronization chemicals. The result shows clear cyclic pat-
terns in all four synchronization methods. On the other hand, Figure 1.3
shows the PCA projection of the genes (genes are labelled with different
annotated cell cycle stages). The result shows clear separation of genes
of different stages and a smooth transition from G1 to S and then S/G2,
G2/M and M/G1. See Exercise 11 for steps to reproduce these results.
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Figure 1.2: PCA projection of the samples (numbers are sequences of
time points).

1.2.2 Multi-dimensional scaling

Multi-dimensional scaling (MDS) aims to map data from high dimen-
sion to a low-dimensional space (usually 2D or 3D Euclidean space) such
that the distance (or dissimilarity) strucutre is best preserved. The loss
function to be minimized is

L = min
∑
i<j

(dij − δij)2,

where δij is the dissimilarity measure between object i and j in the orig-
inal data space and dij is the distance between the two objects after
mapping to the targeted low-dimensional (usually Euclidean) space. The
first classical MDS (CMDS) development (Torgerson, 1954) considered
a symmetric and quantitative dissimilarity matrix with no missingness
(see pp121, Alpaydin 2004). It also required the data at the ratio level of
measurement but this requirement was later generalized to interval level
(Messick, 1956) (see definition of ratio and interval scales in Appendix).
In the loss fuction above, large distances can dominate the optimization
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Figure 1.3: PCA projection of the genes. (1: G1; 2: S; 3: S/G2; 4:
G2/M ; 5: M/G1)

and ignore the structure for pairs of short distances. A standardized loss
function below is called Sammon’s stress (Sammon, 1969) and is usually
preferred to capture local structures:

L = min
1∑

i<j δij

∑
i<j

(dij − δij)2

δij
.

The Sammon’s stress can be explained as an averaged and standar-
dardized mapping error and is a good measure to quantify success of
dimension reduction. The minimization can be performed by gradient
descent or other iterative methods.

Table 1.1 lists the flight mileage of ten cities obtained from
“http://www.webflyer.com/travel/mileage calculator/”. Since cities are
located on the globe and the mileages are calculated as flight mileages,
the table provides a dissimilarity matrix of the ten cities rather than an
Euclidean distance matrix. Several R functions are available to imple-
ment different types of MDS algorithms: cmdscale, sammon and isoMDS.
Figure 1.4 shows the MDS mapping of the ten cities on a 2D Euclidean
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space (Exercise 12). Although classical MDS (cmdscale) and Sammon
mapping (sammon) gave seemingly similar results, they differ greatly in
local structures. For example, the distances between Pittsburgh and DC
and between Pittsburgh and Chicago are 183 and 394 miles, respectively.
The mapping from cmdscale is quite distorted while the Sammon map-
ping better preserve this local distance structure. In this example, the
Sammon stress is as low as 0.0042, showing a good preservation of the
dissimilarity structure in the mapping.

Note that any ”reflection, translation and/or rotation” (i.e. isometry)
of an MDS solution is also an MDS solution since MDS only considers
the preservation of the dissimilarity structure.
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Figure 1.4: MDS mapping of the ten cities on a 2D Euclidean space.
Upper: classical MDS; lower: sammon’s stress.

Below we go over an algorithm for the simplest “classical mulditimen-
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Table 1.1: Flight mileages between pairs of ten cities.

BOST NY DC MIAM CHIC SEAT SF LA DENV PITT
BOSTON 0 206 429 1504 963 2976 3095 2979 1949 495

NY 206 0 233 1308 802 2815 2934 2786 1771 340
DC 429 233 0 1075 671 2684 2799 2631 1616 183

MIAMI 1504 1308 1075 0 1329 3273 3053 2687 1010 2037
CHICAGO 963 802 671 1329 0 2013 2142 2054 996 394
SEATTLE 2976 2815 2684 3273 2013 0 808 1131 1307 2120

SF 3095 2934 2799 3053 2142 808 0 379 1235 2250
LA 2979 2786 2631 2687 2054 1131 379 0 1059 2130

DENVER 1949 1771 1616 2037 996 1307 1235 1059 0 1280
PITT 495 340 183 1010 394 2120 2250 2130 1280 0

sional scaling” where the mapping is equivalent to PCA eigen-decomposition.
Suppose the observed dissimilarity matrix D = {δij}1≤i,j≤n is derived
from the Euclidean distances of an unknown n × q data matrix X (q is
also unknown). Given D, how can we identify the original data matrix
X? Note again that any rotation and reflection of a solution X produces
the same D and is also a soultion. We fix the center of each column in
X at origin (i.e.

∑n
i=1 xik = 0, for 1 ≤ k ≤ q).

Define B = XXT . The elements of B can be written as linear com-
binations of elements of X: bij =

∑q
k=1 xik · xjk. It can be shown that

d2ij = bii + bjj − 2bij and finally bij = − 1
2 [d2ij − d2i· − d2·j + d2··], where

d2i· = (
∑n
j=1 d

2
ij)/n, d2·j = (

∑n
i=1 d

2
ij)/n and d2·· = (

∑n
i=1

∑n
j=1 d

2
ij)/n

2.

Now eigen-decomposition of B can rewrite it as B = VΛVT . If the
original data matrix X is indeed of rank q, the eigenvalues in Λ will
show exactly q non-zero eigen-values. The final mapping solutation is
X = VΛ1/2. Exercise 13 asks to complete the proof and code the imple-
mentation of this algorithm.

1.2.3 Non-negative matrix factorization

(This section is now copied and reorganized from Wikipedia.) Non-
negative matrix factorization (NMF) is a group of algorithms where a
non-negative matrix, X, is factorized into two matrices, W and H with
the constraint that the factors W and H must be non-negative, i.e., all
elements must be equal to or greater than zero. Usually the number of
columns of W and the number of rows of H in NMF are selected so the
product WH will become an approximation to X. The full decomposition
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of X then amounts to the two non-negative matrices W and H as well
as a residual U, such that: X = WH + U. The elements of the residual
matrix can either be negative or positive. The method has been applied
in chemometrics, text mining and bioinformatics (Devarajan, 2008).

There are different types of non-negative matrix factorizations. The
different types arise from using different cost functions for measuring the
divergence between X and WH and possibly by regularization of the W
and/or H matrices. Two simple divergence functions studied by Lee
and Seung are the squared error (or Frobenius norm) and an exten-
sion of the Kullback-Leibler divergence to positive matrices (the origi-
nal Kullback-Leibler divergence is defined on probability distributions).
Each divergence leads to a different NMF algorithm, usually minimiz-
ing the divergence using iterative update rules. The factorization prob-
lem in the squared error version of NMF may be stated as: Given a
nonnegative matrix X find nonnegative matrices W and H such that
F (W,H) = |X−WH|2F is minimized.

1.2.4 Comparison of PCA, MDS and NMF

The three unsupervised dimension reduction methods are useful in many
applications. They have their own pros and cons depending on different
applications. In general, PCA and NMF look for an optimal reduced
space to project to. NMF differs from PCA in that the loadings are re-
stricted to be positive for better interpretation. MDS, on the other hand,
focuses on preserving the dissimilarity (distance) structure of the data.
PCA and NMF work only on data sets of high-dimensional Euclidean
space. MDS is more flexible for any data set where the dissimilarity of
every pair of objects (dissimilarity matrix) is defined. PCA and NMF
“project” the data onto a low-dimensional space while MDS “maps” the
data instead. A key consequence is that a newly added subject can be
easily projected to the existing PCA or NMF induced dimension reduc-
tion. For MDS, additional ad hoc optimization procedure will be needed
to map the new subject to the reduced space. We note again that di-
mension reduction always runs the risk of losing important information
in the data. Figure 1.5 shows an example of two skewed clusters where
dimension reduction by PCA loses the cluster structure (Exercise 7).
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Figure 1.5: An example of two thin clusters where PCA loses the cluster
information.

1.3 Supervised dimension reduction (with
response variable)

When a response variable is available to the data, it is possible to perform
optimal dimension reduction to best visualize the spread of the response
variable in the observations. Fisher’s linear discriminant analysis is ap-
plicable for discrete class labels (e.g. patients of several disease subtypes)
and partial least squares (PLS) method is useful for general continuous
response variable. Below we illustrate the methods starting from finding
the first reduced dimension.

1.3.1 Fisher’s linear discriminant analysis

When class labels are available, Fisher’s discriminant analysis attempts to
project data onto a subspace such that groups of different class labels are
optimally separated. Denote by B =

∑
c(µc − x̄)(µc − x̄)T the between-

class variance of the data (where µc is the mean of class c and x̄ is the
overall mean) and W =

∑
c

∑
i∈c(xi − µc)(xi − µc)

T the within-class
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variance. Consider the following target function

max
a

aTBa

aTWa
.

The numerator aTBa represents the between-class variance after the data
are projected to direction a. Similarly, the denominator aTWa represents
the with-class variance of data projected to a. As a result, the target
function aims to maximize the between-class separation while minimize
the within-class concentration. Note that the target function is scale
invariant (i.e. the target function is invariant for scaling from a vector a
to c · a for a constant c). Perform eigen-decomposition for W = V DV T

such that W
1
2 = V D

1
2V T and W−

1
2 = V D−

1
2V T . Define b = W

1
2 a. The

target function can be rewritten as

max
b

bT (W−
1
2 )TBW−

1
2 b

bT b
.

Define B∗ = (W−
1
2 )TBW−

1
2 . The problem becomes a simple eigende-

composition of B∗ to obtain eigenvectors (denoted as b1, b2, ...). Solution

of a can be calculated as ai = W−
1
2 bi.

1.3.2 Partial least square

Partial least square regression originated from social sciences (Wold,
1966). It was first presented similar to the power method but then the sta-
tistical framework was later established. In contrast to PCA, the method
aims to find the projection direction such that the covaraince of projected
data with the class label or continuous outcome Y is the largest:

max
w

Cov(w~XT ,Y), subject to ||w|| = 1.

In general, if Y is also multi-variate, PLS performs the following op-
timization:

max(Xw)T (Y v),

subject to the constraints ||w|| = wTw = 1 and ||v|| = vT v = 1.

For more references, check “http://www.ats.ucla.edu/stat/sas/library/pls.pdf”.
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1.4 Association between predictors and re-
sponses

Consider a multi-variate linear regression

Yi = ~β · ~Xi, 1 ≤ i ≤ n

where Yi is the response (dependent) variable and ~Xi contains p covari-
ates (independent variables). When p is small, n is large and X is full
rank (i.e. no colinearity between covariates), conventional multi-variate
linear regression can work well. When p is very large (very common

in genomic applications), ~X is often singular and the regression result
is unstable (multi-collinearity). One conventional solution is to perform

eigen-decomposition of ~X and select the top eigen-vectors as predictors.
This approach (often called PCA regression) selects eigenvectors as co-

variates that best explain ~X but has no guarantee that they will explain
Y well. Alternatively, PLS identifies components from ~X such that it
explains as much as possible of the covariance between ~X and Y and the
PLS components are used for regression (so-called PLS regressioin). See
Nguyen and Rocke (2002) for a microarray class prediction example using
PLS dimension reduction.

See “http://www.casact.org/pubs/dpp/dpp08/08dpp76.pdf” for more
details of PCA regression and PLS regression.

Exercise:

1. (a) Consider X = (X1, · · · , Xd)
T = N((µ1, · · · , µd)T , Id). Show

that the L2-norm ||X||2 =
√
X2

1 + · · ·+X2
d converges to

√
d when

d goes to infinity. The convergence is actually very fast. This result
shows that the high-dimensional standard multivariate normal dis-
tribution is populated in concentration on the sphere with radius√
d. (b) Perform simulation to verify (a). For a given d, simulate

1000 observations from X and calculate their L2-norms. Simulate
d from 1 to 100. Plot a scatter plot of d on the x-axis and the
box-plot of the L2-norms of data for each d on the y-axis. Draw a
line of y =

√
d. The result should show a fast convergence.

2. Suppose a symmetrix positive-definite matrix Σ and its eigen-decomposition
Σ = V DV T . Prove that Σm = V DmV T , ∀m ∈ N. Extend the
proof to ∀m ∈ R.

3. Prove the theorem that derived eigenvalues convergence to the true
eigenvalues at the rate of

√
n under the multivariate normal as-

sumption.
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4. Prove that the power itenration method will converge to find the
eigenvector with the largest eigenvalue if the initial random vector
is not orthogonal to it.

5. (a) Write an R routine to implement the characteristic polynomial
algorithm for eigen decoomposition. (b) Write an R routine to
implement the power iteration algorithm for eigen decomposition.
(c) Apply both routines to a small example and compare the result
with the R standard routine “eigen”.

6. Prove Eckart-Young theorem for low-rank matrix approximation.

7. (a) Simulate a two-cluster skewed distribution. Assume Z = pX =
(1− p)Y . p ∼ Binomial(1, 0.5),

X = (X1, X2)T ∼ N
((

0
0

)
,

(
0.05 0.045
0.045 1

))
and

Y = (Y1, Y2)T ∼ N
((

1.5
0

)
,

(
0.05 0.045
0.045 1

))
Simulate 1000 observations. (b) Perform PCA method and plot
the first PC on the scatter plot, and the PC projection of one-
dimension. (c) Perform MDS, Fisher discriminant analysis and PLS
to reduce the two-dimensional data to one-dimension. Compare
their performance in maintaining the two-cluster structure.

8. Following the simulation in Exercise 7, standardize the data and
perform PCA (i.e. perform eigen-decomposition on correlation ma-
trix instead of covariance matrix). How does the result differ?

9. (a) Load in ”iris” data set from R package ”datasets”. Perform
PCA to project the first four numeric variables to a two-dimensional
space. Draw scatter plot for the projected data. Label the classes
(the fifthe variable in the data) with different colors or labels. (b)
Apply power iteration method to perform PCA in (a). (c) Similarly
perform partial least square and Fisher’s discriminant analysis to
the iris data.

10. Breast cancer used to be considered as one type of cancer. Re-
cent molecular studies have found that it contains several distinct
subtypes with different prognosis and desired treatment strategies.
Gene expression profile is a powerful tool for a genome-wide classi-
fication tool towards “personalized medicine”. In this exercise, the



18 Dimension reduction

breast cancer gene expression data from TCGA with five breast
cancer subtype labels are prepared in “TCGA breastCancer.txt”.
Load in the data, perform PCA to project samples and label sam-
ples of different subtypes with different colors.

11. Load the tab-delimited ”yeastCellCycle.txt” file into R. The sample
annotation denotes the type of chemicals used for cell cycle syn-
chronization (alhpa, cdc15, cdc28 and elu). (a) Perform SVD and
project the samples from 800 dimensional space onto a 2D space.
Reproduce Figure 1.2 by drawing the scatter plots with samples of
the four chemicals separately. (b) Project genes to a 2D eigen space
and reproduce Figure 1.3. (c)Redo dimension reduction on samples
in (a) using MDS. (d) Redo dimension reduction on genes in (b)
using MDS.

12. Load the tab-delimited ”Mileage.txt.txt” file into R and using R
functions to perform MDS analysis to map the ten cities onto a 2D
Euclidean space.

13. (a) Complete the proof of the classical multidimensional scaling
(CMDS) algorithm. (b) Write an R function for CMDS based on
the algorithm. Simulation a small data set and compare the result
of your function with the “cmdscal” function in R.

Appendix:
Psychologist Stanley Smith Stevens categorized all measurements in sci-
ence into four types of scales: nominal, ordinal, interval and ratio (Stevens,
1946). Nominal scale uses ”labels” instead of ordered or quantitative
scale. Examples include “sex”, “race” and “color”. Variables assessed on
a nominal scale are called categorical variables. Ordinal scale describes
data in rank order, rather than relative size or degree of differences. Ex-
amples include “tumor grade” and “pain scale”. Interval scale considers
variables with meaningful difference between the levels. A famous exam-
ple of interval scale is temparature. It is defined as 0 and 100 degree at
freezing and boiling water and the unit (degree) is defined as 1/100 tem-
parature difference between the two extremes. Note that IQ score should
be considered ordinal but not interval scale since difference between 160
and 130 IQ scores is not comparable tween 130 and 100 IQ scores. Ratio
scale covers most measurement in physical sciences and engineering that
defines the measure as the ratio between the observed magnitude and the
unit magnitude. Mass, length and angle are all examples. The major dif-
ference between interval and ratio scales is that calculating ratio between
two observations is meaningful in ratio scale but not in interval scale. For
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example, taking ratio between 40 degree and 20 degree is meaningless.
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